If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+4n-480=0
a = 2; b = 4; c = -480;
Δ = b2-4ac
Δ = 42-4·2·(-480)
Δ = 3856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3856}=\sqrt{16*241}=\sqrt{16}*\sqrt{241}=4\sqrt{241}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{241}}{2*2}=\frac{-4-4\sqrt{241}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{241}}{2*2}=\frac{-4+4\sqrt{241}}{4} $
| 7d-3d=9-5d | | 5s+24=99 | | 4m+10=90 | | 7x/2-1=3x+2 | | 2p=p+-7 | | (8n−6)+10(7−n)=2 | | n(8n−6)+10(7−n)=2 | | 3^(2x+1)-4*3^(x+2)*3^(2)-81=0 | | 3^(2x+1)-4*3^(x+2)-81=0 | | |2v+6|=|2v-4| | | 5x²+5x-60=0 | | (n+2)(n+4)=27 | | X=y1 | | 0.35x=1.4 | | t/2-3/2=4/4-3t/4 | | 5(2y)y=0 | | a+3/a+7-2a-4/a^2+3a-28=2-a/4-a | | (2259+x)/x=16.667/100 | | 8x+7+7x=14 | | 2+√4y-3=11 | | X=200-10y | | 2x+1/4x=x+2/2x-1 | | M-4=m-5 | | 0.3(2x-3)=0.4+1.1 | | 3(x+2)-2(3x-5)=14 | | (1271+x)/x=16,667/100 | | 2x(x3)=5 | | 3x+6-6x+10=14 | | (1271+x)/x=16,667 | | (1271+x)/x=150 | | (1000+x)/x=150 | | 8-3(x+2)=20 |